3,116 research outputs found

    Form-factors computation of Friedel oscillations in Luttinger liquids

    Full text link
    We show how to analytically determine for g1/2g\leq 1/2 the "Friedel oscillations" of charge density by a single impurity in a 1D Luttinger liquid of spinless electrons.Comment: Revtex, epsf, 4pgs, 2fig

    Kink-boundary collisions in a two dimensional scalar field theory

    Get PDF
    In a two-dimensional toy model, motivated from five-dimensional heterotic M-theory, we study the collision of scalar field kinks with boundaries. By numerical simulation of the full two-dimensional theory, we find that the kink is always inelastically reflected with a model-independent fraction of its kinetic energy converted into radiation. We show that the reflection can be analytically understood as a fluctuation around the scalar field vacuum. This picture suggests the possibility of spontaneous emission of kinks from the boundary due to small perturbations in the bulk. We verify this picture numerically by showing that the radiation emitted from the collision of an initial single kink eventually leads to a bulk populated by many kinks. Consequently, processes changing the boundary charges are practically unavoidable in this system. We speculate that the system has a universal final state consisting of a stack of kinks, their number being determined by the initial energy

    Gravitational waves from fundamental axion dynamics

    Get PDF
    A totally asymptotically free QCD axion model, where all couplings flow to zero in the infinite energy limit, was recently formulated. A very interesting feature of this fundamental theory is the ability to predict some low-energy observables, like the masses of the extra fermions and scalars. Here we find and investigate a region of the parameter space where the Peccei-Quinn (PQ) symmetry is broken quantum mechanically through the Coleman-Weinberg mechanism. This results in an even more predictive framework: the axion sector features only two independent parameters (the PQ symmetry breaking scale and the QCD gauge coupling). In particular, we show that the PQ phase transition is strongly first order and can produce gravitational waves within the reach of future detectors. The predictivity of the model leads to a rigid dependence of the phase transition (like its duration and the nucleation temperature) and the gravitational wave spectrum on the PQ symmetry breaking scale and the QCD gauge coupling

    Beyond Chili Peppers: Using Custom Surveys to Improve Learning and Assessment

    Get PDF
    This article shows how customized learning surveys can be used to capture students’ perceptions of their learning in ways that aid pedagogy and students’ growth. In contrast to relying solely on standardized university-designed evaluations of teaching, thoughtful use of self-designed surveys about learning offers four benefits. First, this technique generates timely feedback in a way that allows instructors to adjust our teaching when it matters most. Second, custom surveys allow instructors to center learning as the core outcome and therefore facilitate specific, educationally relevant, and useful feedback. Third, the approach can cue students to think of themselves as the core agent of their own education, which helps them move toward greater self-directed learning in the long term. Finally, the approach facilitates the collection of data that can be used in annual assessments or applications for tenure and promotion, which will be increasingly important as more universities seek alternatives to using standardized student evaluations in personnel decisions. In this article I lay out my rationale for adopting this method, describe how it works, and explain why I see it as fruitful for improving assessment, teaching, and learning

    Boundary bound states and boundary bootstrap in the sine-Gordon model with Dirichlet boundary conditions.

    Full text link
    We present a complete study of boundary bound states and related boundary S-matrices for the sine-Gordon model with Dirichlet boundary conditions. Our approach is based partly on the bootstrap procedure, and partly on the explicit solution of the inhomogeneous XXZ model with boundary magnetic field and of the boundary Thirring model. We identify boundary bound states with new ``boundary strings'' in the Bethe ansatz. The boundary energy is also computed.Comment: 25 pages, harvmac macros Report USC-95-001

    Direct Calculation of Breather S Matrices

    Get PDF
    We formulate a systematic Bethe-Ansatz approach for computing bound-state (``breather'') S matrices for integrable quantum spin chains. We use this approach to calculate the breather boundary S matrix for the open XXZ spin chain with diagonal boundary fields. We also compute the soliton boundary S matrix in the critical regime.Comment: 23 pages, LaTeX, 1 eps figur

    Gauge Invariant Action for the Open Bosonic String: Tachyon Action

    Full text link
    A gauge invariant action for the open bosonic string has been proposed in an earlier paper. We work out the consequences of this proposal for the lowest mode, viz. the tachyon. The action can be calculated for generic momenta, perturbatively, order by order in the tachyon field. For on shell tachyons we explicitly calculate the cubic action and show that it reproduces the correct equations of motion and coincides wih the β\beta function to the required order. The calculation is done in terms of bare fields with a finite cutoff, which is the original prescription. We also show that it is possible in some momentum regions to renormalize the theory and eliminate the cutoff dependence so that the continuum limit can be taken. After renormalization, the parameter RaR\over a is replaced by RLR\over L where RR is an IR cutoff, aa is the UV cutoff and LL is some renormalization scale. There is also some arbitrariness in the overall normalization due to the choice of regularization scheme - this does not affect on-shell quantities. We also rederive within this scheme, the action in the region of zero momentum, which gives the exact (tree level) tachyon potential. The tachyon potential is consistent with Sen's conjecture that the height of the potential is the same as the tension of the brane.Comment: 31 pages, Late

    Exact noncommutative solitons in p-adic strings and BSFT

    Full text link
    The tachyon field of p-adic string theory is made noncommutative by replacing ordinary products with noncommutative products in its exact effective action. The same is done for the boundary string field theory, treated as the p -> 1 limit of the p-adic string. Solitonic lumps corresponding to D-branes are obtained for all values of the noncommutative parameter theta. This is in contrast to usual scalar field theories in which the noncommutative solitons do not persist below a critical value of theta. As theta varies from zero to infinity, the solution interpolates smoothly between the soliton of the p-adic theory (respectively BSFT) to the noncommutative soliton.Comment: 1+14 pages (harvmac b), 1 eps figure, v2: references added, typos correcte

    Toda Lattice Models with Boundary

    Get PDF
    We consider the soliton solutions in 1- and (1+1)-dimensional Toda lattice models with a boundary. We make use of the solutions already known on a full line by means of the Hirota's method. We explicitly construct the solutions satisfying the boundary conditions. The Z{\bf Z}_{\infty}-symmetric boundary condition can be introduced by the two-soliton solutions naturally.Comment: 9 pages, latex, no figure
    corecore